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“The ultimate Nature
of Reality is
Numbers”

A quote from Pythagoras (570-495 BC)
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“Wherever there is
number, there is

beauty”
A quote from Proclus (412-485 AD)
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Traditional Clock plus Circumference

1 min =
1

60
of 1 hour
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An Electronic Clock plus a Calendar

Hour : Minutes : Seconds
dd/mm/yyyy

1 month =
1

12
of 1year

1 day =
1

365
of 1 year (normally)

1 hour =
1

24
of 1 day

1 min =
1

60
of 1 hour

1 sec =
1

60
of 1 min
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TSquares: Use of Pythagoras Theorem
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Golden number ϕ and Golden rectangle

Roots of x2 − x− 1 = 0 are ϕ =
1 +

√
5

2
and −

1

ϕ
=

1−
√
5

2
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Golden number ϕ and Inner Golden spiral

Drawn with up to 10 golden rectangles
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Outer Golden spiral and L. Fibonacci
(1175-1250) sequence

F = { 1︸︷︷︸
f1

, 1︸︷︷︸
f2

, 2, 3, 5, 8, 13..., fn, ...} : fn = fn−1+fn−2, n ≥ 3

fn =
1√
5
(ϕn + (−1)n−1 1

ϕn
)
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Euler’s Number e

s3 = 1 +
1

1!
+

1

2
+

1

3!
= 2.6666....66....

s4 = 1 +
1

2
+

1

3!
+

1

4!
= 2.70833333...333....

s5 = 1 +
1

2
+

1

3!
+

1

4!
+

1

5!
= 2.7166666666...66....

.............................

lim
n→∞

{1 + 1

2
+

1

3!
+

1

4!
+

1

5!
+ ....+

1

n!
} = e = 2.718281828459........

e is an irrational number discovered by L. Euler (1707-1783), a limit of a
sequence of rational numbers.
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Definition of Rational and Irrational numbers

! A Rational number r is defined as:

r =
m

n

where m and n are integers with n $= 0.

! Otherwise, if a number cannot be put in the
form of a ratio of 2 integers, it is said to be an
Irrational number.
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Distinguishing between rational and irrational
numbers

Any number x, (rational or irrational) can be
written as:

x = I + f

• I is its integral part;

• 0 ≤ f < 1 is its fractional part.
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Examples

• 48
25 = 1 + 0.92

• 8
3 =

• 17
7 =

•
√
2 =

• π =

• ϕ = 1+
√
5

2 =
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Answers to Examples

• 48
25 = 1 + 0.92

• 8
3 = 2 + 0.6666666.....

• 17
7 = 2 + 0.4285714285714.....

•
√
2 = 1 + 0.4142135623731.....

• π = 3 + 0.14159265358979.....

• ϕ = 1 + 0.6180339887499...
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Distinguishing between rational and irrational
numbers

1. As x = I + f, I: Integer; 0 < f < 1:
Fractional.

2. =⇒ Distinction between rational and irrational
can be restricted to fraction numbers f
between 0 < f < 1.
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Position of the Problem

R = {Rational Numbers f, 0 < f < 1}
I = {Irrational Numbers f, 0 < f < 1}

The segment following segment S represents all
numbers between 0 and 1:

S = R ∪I with R ∩I = Φ empty set.

• Basic Question:

• If we pick a number f at random between 0
and 1, what is the probability that this number
be rational: f ∈ R?
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The Decimal Representation of a number

Any number f : 0 < f < 1 has the following
decimal representation:

f
Notation︷︸︸︷

= 0.d1d2d3...dk...

di ∈ {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

f = d1(
1

10
) + d2(

1

100
) + d3(

1

1000
) + ...+ dk(

1

10k
) + ... (Equality)

with at least one of the di’s $= 0.
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Main Theorem about Rational Numbers

The number 0 < f < 1 is rational, that is
f = m

n , m < n,

if and only if

its decimal representation:

f = 0.d1d2d3...dk...

= d1(
1

10
) + d2(

1

102
) + d3(

1

103
) + ...+ dk(

1

10k
) + ...

takes one of the following forms:

f is either Terminating: di = 0 for i > l ≥ 1
or f is Non-Terminating with a repeating
pattern.
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Proof of the Main Theorem about Rational
Numbers

Theorem
The number 0 < f < 1 is rational, that is
f = m

n , m < n, if and only if its decimal
representation:

f = 0.d1d2d3...dk...

is either Terminating (di = 0 for i > l ≥ 1) or is
Non-Terminating with a repeating pattern.
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Proof of the only if part of Main
Theorem about Rational Numbers

Proof.

1. If f has a terminating decimal representation,
then f is rational.

2. If f has a non-terminating decimal
representation with a repeating pattern, then f
is rational.
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Proof of the only if part of Main
Theorem about Rational Numbers

Proof.

1. If f has a terminating decimal representation,
then f is rational.

2. If f has a non-terminating decimal
representation with a repeating pattern, then f
is rational.

Rational numbers vs. Irrational numbers



Proof of the first Statement of only if part

Statement 1: If f has a terminating decimal
representation, then f is rational. Consider:

f = d1(
1

10
) + d2(

1

100
) + d3(

1

1000
) + ...+ dk(

1

10k
)

then:

10kf = d110
k−1 + d210

k−2 + ...+ dk.

implying:

f =
m

10k
with m = d110

k−1 + d210
k−2 + ...+ dk
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Example

0.625 =
625

1, 000
=

125× 5

125× 8

0.625 = after simplification:
5

8
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Proof of the second Statement of only if part

Statement 2: If f has a non terminating decimal
representation with repeating pattern, then f is rational.
Without loss of generality, consider:

f = 0.d1d2d3...dk = 0.d1d2d3...dkd1d2d3...dkd1d2d3...dk...

f = d1(
1

10
) + d2(

1

100
) + d3(

1

1000
) + ...+ dk(

1

10k
) +

1

10k
[d1(

1

10
) + d2(

1

100
) + d3(

1

1000
) + ...+ dk(

1

10k
)] +

1

102k
[....]

then:
10kf = d110

k−1 + d210
k−2 + ...+ dk︸ ︷︷ ︸

m: Integer

+f.

implying:

(10k − 1)︸ ︷︷ ︸
n: Integer

f = m ⇐⇒ f =
m

n
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Example on Proof of the second Statement

f = 0.428571 = 0.428571428571428571...

f = 4(
1

10
)+2(

1

100
)+8(

1

103
)+5(

1

104
)+7(

1

105
)+1

1

106
+

1

106
(f)

106×f = 4×105+2×104+8×103+5×102+7×10+1+f

(106 − 1)× f = 428, 571

f =
428, 571

106 − 1
=

428, 571

999, 999

After simplification:

f =
428, 571

999, 999
=

3× 142, 857

7× 142, 857
=

3

7
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Proof of the “IF PART”

f = 0.d1d2d3...dk... ∈ R
⇓

f has a terminating representation,
or

f has a non-terminating representation with a repeating pattern.
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Tools for Proof of the if part of Main
Theorem about Rational Numbers

Two tools to prove this result:

1. Euclidean Division Theorem

2. Pigeon Hole Principle
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First Tool: Euclidean Division Theorem

M ≥ 0 and N ≥ 1.
Then, there exists a unique pair of integers (d, r),
such that:

M = d×N + r,

or equivalently:

M

N
= d+

r

N
d ≥ 0 is the quotient of the division, and
r ∈ {0, 1, ..., N − 1} is the remainder.
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Application of Euclidean Division Theorem on
f , 0 < f < 1

f =
m

n
= d1(

1

10
) + d2(

1

100
) + d3(

1

1000
) + ...+ dk(

1

10k
) + ...

10m

n
= d1+f1 where f1 = d2(

1

10
)+d3(

1

100
)+...+dk(

1

10k−1
)+...

10m = d1n+ r1
10m
n = d1 + f1 f1 =

r1
n = d2(

1
10) + ...

10r1 = d2n+ r2
10r1
n = d2 + f2 f2 =

r2
n = d3(

1
10) + ...

...
10rk−1 = dkn+ rk

10rk−1

n = dk + fk fk =
rk
n = dk+1(

1
10) + ...

...

Each of r1, r2, ..., rk, .. ∈ { 0︸︷︷︸,
︷ ︸︸ ︷
1, ..., n− 1}

“Successive Multiplications by 10 and Divisions by n (SMD)”
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The Algorithm of Successive Multiplications
by 10 and Divisions by n

! Can this procedure terminate?

! yes, when rk = 0.
! If not, {di, ri} starts repeating.
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Proof of Terminating Sequences using
Successive Multiplications and Divisions

10m

n
= d1+d2(

1

10
)+d3(

1

100
)+ ...+dk(

1

10k−1
)+ ...

10m = d1n+ r1
10m
n = d1 + f1 f1 = r1

n = d1 + d2(
1
10 ) + ...

10r1 = d2n+ r2
10r1
n = d2 + f2 f2 = r2

n = d2 + d3(
1
10 ) + ...

...
10rk−1 = dkn+ 0 10rk−1

n = dk + fk fk = 0

Algorithm stops at k : rk = 0 implies:

rk+1 = rk+2 = .... = 0 and dk+1 = dk+2 = ... = 0.

=⇒ m

n
= 0.d1d2....dk.
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Examples of fractions with terminating
decimal representation

1. m
n = 1

4 , m = 1, n = 4

10× 1 = 2× 4 + 2 ⇔ 10×1
4 = 2 + 2

4 , (d1 = 2, r1 = 2)

10× 2 = 5× 4 + 0 ⇔ 10×2
4 = 5 + 0

4 , (d2 = 5, r2 = 0)

r2 = 0 implies 1
4 = 0.d1d2 = 0.25
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Examples of fractions with terminating
decimal representation

2. m
n = 5

8 , m = 5, n = 8

10× 5 = 6× 8 + 2 ⇔ 10×5
8 = 6 + 2

8 , (d1 = 6, r1 = 2)

10× 2 = 2× 8 + 4 ⇔ 10×2
8 = 2 + 4

8 , (d2 = 2, r2 = 4)

10× 4 = 5× 8 + 0 ⇔ 10×4
8 = 5 + 0

8 , (d3 = 5, r3 = 0)

r3 = 0 implies 5
8 = 0.d1d2d3 = 0.625
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Examples of fractions with terminating
decimal representation

2. m
n = 5

8 , m = 5, n = 8

10× 5 = 6× 8 + 2 ⇔ 10×5
8 = 6 + 2

8 , (d1 = 6, r1 = 2)

10× 2 = 2× 8 + 4 ⇔ 10×2
8 = 2 + 4

8 , (d2 = 2, r2 = 4)

10× 4 = 5× 8 + 0 ⇔ 10×4
8 = 5 + 0

8 , (d3 = 5, r3 = 0)

r3 = 0 implies 5
8 = 0.d1d2d3 = 0.625
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Successive Multiplications and Divisions: Non
Terminating Representations

10m

n
= d1 + d2(

1

10
) + d3(

1

100
) + ...+ dk(

1

10k−1
) + ...

10m = d1n+ r1 ⇔ 10m
n = d1 +

r1
n = d1 + d2(

1
10) + ...

10r1 = d2n+ r2 ⇔ 10r1
n = d2 +

r2
n = d2 + d3(

1
10) + ...

...
10rk−1 = dkn+ rk ⇔ 10rk−1

n = dk +
rk
n = dk + dk+1(

1
10) + ...

...

Each of r1, r2, ..., rk, .. ∈ {
︷ ︸︸ ︷
1, ..., n− 1} and ri $= 0 for all i.
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Second tool: Use of Pigeon hole Principle in
proving that Infinite representations for m

n
have repeating patterns

Statement:
If you have n pigeons

︷ ︸︸ ︷

........

to occupy n− 1 holes:

︷ ︸︸ ︷

Then at least 2 pigeons must occupy the same hole.
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Example 10 pigeons and 9 pigeon holes
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Example of 3 pigeons and 2 pigeon holes
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Solution of example of 3 pigeons and 2 pigeon
holes

OR
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Application of Pigeonhole Principle for
non-terminating sequences

10m = d1n+ r1 ⇔ 10m
n = d1 +

r1
n

10r1 = d2n+ r2 ⇔ 10r1
n = d2 +

r2
n

...
10rk−1 = dkn+ rk ⇔ 10rk−1

n = dk +
rk
n

...

r1 = r2 = ........ rn−1 = rn =

By Pigeonhole principle: At least 2 remainders rj, rk,
1 ≤ j < k ≤ n: rj = rk.
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Applying the Pigeon hole Principle to obtain
repeating sequences

Let {j, k} be the first pair, such that:
1 ≤ j < k ≤ n and rj = rk then:

10rj = dj+1n+ rj+1 and 10rk = dk+1n+ rk+1

⇓
dj+1 = dk+1 and rj+1 = rk+1...

More generally,

dj+l = dk+l and rj+l = rk+l, 1 ≤ l ≤ k − j.

and therefore by recurrence:
m

n
= 0.d1d2...djdj+1....dk

Length of pattern: 1 ≤ k − j ≤ n− 1.Rational numbers vs. Irrational numbers



Example

f =
m

n
=

6

7

10× 6 = 8× 7 + 4 d1 = 8 r1 = 4
10× 4 = 5× 7 + 5 d2 = 5 r2 = 5
10× 5 = 7× 7 + 1 d3 = 7 r3 = 1
10× 1 = 1× 7 + 3 d4 = 1 r4 = 3
10× 3 = 4× 7 + 2 d5 = 4 r5 = 2
10× 2 = 2× 7 + 6 d6 = 2 r6 = 6
10× 6 = 8× 7 + 4 d7 = 8 r7 = 4

...

Each of r1, r2, r3, r4, r5, ... ∈ {
︷ ︸︸ ︷
1, 2, 3, 4, 5, 6}.
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Example f = m
n = 6

7

r1 = 4 r2 = 5 r3 = 1 r4 = 3 r5 = 2 r6 = 6 r7 = 4

{1, 7} is the first pair, such that r1 = r7 then:

6

7
= 0.d1d2d3d4d5d6d7 = 0.8571428

Length of pattern is 6.
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Exercise

Find the decimal representation of

f =
m

n
=

2

3

using Successive Multiplications and Divisions
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Solution of the exercise f = m
n = 2

3

10× 2 = 6× 3 + 2 d1 = 6 r1 = 2
10× 2 = 6× 3 + 2 d2 = 6 r2 = 2
10× 2 = 6× 3 + 2 d3 = 6 r3 = 2

...

{1, 2} is the first pair, such that r1 = r2 and therefore:

2

3
= 0.d1d2 = 0.66

Length of pattern is 1
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Answer to the Main question of Module

R = {Rational Numbers f, 0 < f < 1}
I = {Irrational Numbers f, 0 < f < 1}
S = R ∪I with R ∩I = Φ empty set.

Question: If we pick at random a number f
between 0 and 1, what is the probability that this
number be rational: f ∈ R?
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! Both R and I are Infinite sets.

! |R| = ∞1 and |I| = ∞2

! Which one of these two infinities is bigger?
! If f ∈ R:

! f = 0.d1d2..dk or
! f = 0.d1d2..dl−1dl...dk.

! While if f ∈ I : f = 0.d1d2..dk.... (infinite
representation with no specific pattern).

! Hence, “much more” ways to obtain elements
in I than in R.
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! Hence, “much more” ways to obtain elements
in I than in R.
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R is “countably infinite”

! To understand this concept, define for n = 1, 2, 3, 4, ...:

Rn = { m

n+ 1
|m = 1, 2, ..., n, gcd(m,n+ 1) = 1}.

! Examples of Rn:
n = 1 : R1 = {1

2} = {r1}
n = 2 : R2 = {1

3 ,
2
3} = {r2, r3}

n = 3 : R3 = {1
4 ,

3
4} = {r4, r5}

n = 4 : R4 = {1
5 ,

2
5 ,

3
5 ,

4
5} = {r6, r7, r8, r9}

! Check n = 5 : R5 = {1
6 , ?}

! R5 = {1
6 ,

5
6} = {r10, r11}
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! As a consequence, we can enumerate the
elements of R:

R = {r1, r2, r3, r4, ...}

! Implying:
Countable infinity of R ⇐⇒ a one to one
relation between R and the natural integers:
N = {1, 2, 3, 4...}
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! On the other hand, I is “uncountably”
infinite

! This follows from the fact that f is irrational if
and only if its infinite representation
0.d1d2...dk... has all its elements belonging
randomly to the set {0, 1, 2, ...9}.

! At that point, the proof of uncountability of I
can be obtained using Cantor’s proof by
contradiction.
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! Let us assume “countability of I”, i.e. its
elements can be listed as {i1, i2, i3, ...}, a set in
a one-one relation with the set of natural
numbers.

! i1 = 0.f1,1f1,2...f1,k....
i2 = 0.f2,1f2,2...f2,k....
...................................
im = 0.fm,1fm,2...fm,k....
...................................

! Let i = 0.f 1,1, f 2,2, ..., fk,k....., such that the
{f i,i}’s are randomly chosen with:
f 1,1 $= f1,1, f 2,2 $= f2,2, ..., fk,k $= fk,k, ....

! Contradiction: i ∈ I but i different from each
of the elements in {i1, i2, i3...}.
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Answer to Main Question

• |R| = ∞1 ≡ ℵ0.

• |I| = ∞2 ≡ C.
• With ℵ0 << (“much less than” ) C.

=⇒ Prob(f ∈ R) = ℵ0

ℵ0+C ≈ ℵ0

C ≈ 0.
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