Rational numbers vs. Irrational numbers

Nabil Nassif, PhD

in cooperation with

Sophie Moufawad, MS

and the assistance of Ghina El Jannoun, MS and Dania Sheaib, MS

American University of Beirut, Lebanon

An MIT BLOSSOMS Module August, 2012

"The ultimate Nature of Reality is Numbers"

A quote from Pythagoras (570-495 BC)

"Wherever there is number, there is beauty" A quote from Proclus (412-485 AD)

Traditional Clock plus Circumference

Rational numbers vs. Irrational numbers

3 . 3

An Electronic Clock plus a Calendar

Hour : Minutes : Seconds dd/mm/yyyy

 $1 \text{ month} = \frac{1}{12} \text{ of 1year}$ $1 \text{ day} = \frac{1}{365} \text{ of 1 year (normally)}$ $1 \text{ hour} = \frac{1}{24} \text{ of 1 day}$ $1 \text{ min} = \frac{1}{60} \text{ of 1 hour}$ $1 \text{ sec} = \frac{1}{60} \text{ of 1 min}$

TSquares: Use of Pythagoras Theorem

Rational numbers vs. Irrational numbers

문 🛌 문

Golden number φ and Golden rectangle

Golden number φ and Inner Golden spiral

Drawn with up to 10 golden rectangles

Outer Golden spiral and L. Fibonacci (1175-1250) sequence

 $\mathcal{F} = \{\underbrace{1}_{f_1}, \underbrace{1}_{f_2}, 2, 3, 5, 8, 13..., f_n, ...\}: f_n = f_{n-1} + f_{n-2}, n \ge 3$

$$f_n = \frac{1}{\sqrt{5}} (\varphi^n + (-1)^{n-1} \frac{1}{\varphi^n})$$

Euler's Number e

$$s_{3} = 1 + \frac{1}{1!} + \frac{1}{2} + \frac{1}{3!} = 2.6666....66....$$

$$s_{4} = 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} = 2.70833333...333....$$

$$s_{5} = 1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} = 2.71666666666...66....$$

$$\lim_{n \to \infty} \{1 + \frac{1}{2} + \frac{1}{3!} + \frac{1}{4!} + \frac{1}{5!} + + \frac{1}{n!}\} = e = 2.718281828459.....$$

e is an irrational number discovered by L. Euler (1707-1783), a limit of a sequence of rational numbers.

イロン イ団ン イヨン イヨン 三日

Definition of Rational and Irrational numbers

• A **Rational number** *r* is defined as:

$$r = \frac{m}{n}$$

where m and n are integers with $n \neq 0$.

 Otherwise, if a number cannot be put in the form of a ratio of 2 integers, it is said to be an Irrational number.

Any number x, (rational or irrational) can be written as:

$$x = I + f$$

Any number x, (rational or irrational) can be written as:

$$x = I + f$$

• *I* is its integral part;

Any number x, (rational or irrational) can be written as:

$$x = I + f$$

- *I* is its integral part;
- $0 \le f < 1$ is its fractional part.

Examples

Rational numbers vs. Irrational numbers

□ > < E > < E > _ E

Answers to Examples

•
$$\frac{48}{25} = 1 + 0.92$$

•
$$\frac{8}{3} = 2 + 0.66666666....$$

•
$$\frac{17}{7} = 2 + 0.4285714285714...$$

- $\sqrt{2} = 1 + 0.4142135623731....$
- $\pi = 3 + 0.14159265358979....$
- $\varphi = 1 + 0.6180339887499...$

1. As
$$x = I + f$$
, I: Integer; $0 < f < 1$:
Fractional.

- 1. As x = I + f, I: Integer; 0 < f < 1: Fractional.
- 2. \implies Distinction between rational and irrational can be restricted to fraction numbers f between 0 < f < 1.

Position of the Problem

 $\mathcal{R} = \{ \text{Rational Numbers } f, 0 < f < 1 \}$

 $\mathcal{I} = \{ \text{Irrational Numbers } f, \, 0 < f < 1 \}$

The segment following segment \mathcal{S} represents all numbers between 0 and 1:

 $\mathcal{S}=\mathcal{R}\cup\mathcal{I} \ \text{with} \ \mathcal{R}\cap\mathcal{I} \ = \Phi \ \text{empty set}.$

• Basic Question:

Position of the Problem

 $\mathcal{R} = \{ \text{Rational Numbers } f, 0 < f < 1 \}$

 $\mathcal{I} = \{ \text{Irrational Numbers } f, \, 0 < f < 1 \}$

The segment following segment ${\cal S}$ represents all numbers between 0 and 1:

 $\mathcal{S} = \mathcal{R} \cup \mathcal{I}$ with $\mathcal{R} \cap \mathcal{I} = \Phi$ empty set.

• Basic Question:

 If we pick a number f at random between 0 and 1, what is the probability that this number be rational: f ∈ R?

The Decimal Representation of a number

Any number f: 0 < f < 1 has the following decimal representation:

$$f \stackrel{Notation}{\longleftarrow} 0.d_1d_2d_3...d_k...$$

$$d_i \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$$

$$f = d_1(\frac{1}{10}) + d_2(\frac{1}{100}) + d_3(\frac{1}{1000}) + \dots + d_k(\frac{1}{10^k}) + \dots$$

with at least one of the d_i 's $\neq 0$.

Main Theorem about Rational Numbers

The number 0 < f < 1 is rational, that is $f = \frac{m}{n}, \, m < n$,

if and only if

its decimal representation:

$$f = 0.d_1d_2d_3...d_k...$$

= $d_1(\frac{1}{10}) + d_2(\frac{1}{10^2}) + d_3(\frac{1}{10^3}) + ... + d_k(\frac{1}{10^k}) + ...$

takes one of the following forms:

Main Theorem about Rational Numbers

The number 0 < f < 1 is rational, that is $f = \frac{m}{n}, \ m < n$,

if and only if

its decimal representation:

$$f = 0.d_1d_2d_3...d_k...$$

= $d_1(\frac{1}{10}) + d_2(\frac{1}{10^2}) + d_3(\frac{1}{10^3}) + ... + d_k(\frac{1}{10^k}) + ...$

takes one of the following forms:

f is either **Terminating**: $d_i = 0$ for $i > l \ge 1$

Main Theorem about Rational Numbers

The number 0 < f < 1 is rational, that is $f = \frac{m}{n}, \ m < n$,

if and only if

its decimal representation:

$$f = 0.d_1d_2d_3...d_k...$$

= $d_1(\frac{1}{10}) + d_2(\frac{1}{10^2}) + d_3(\frac{1}{10^3}) + ... + d_k(\frac{1}{10^k}) + ...$

takes one of the following forms:

f is either **Terminating**: $d_i = 0$ for $i > l \ge 1$ or f is **Non-Terminating** with a repeating pattern.

Proof of the Main Theorem about Rational Numbers

Theorem

The number 0 < f < 1 is rational, that is $f = \frac{m}{n}$, m < n, if and only if its decimal representation:

$$f = 0.d_1 d_2 d_3 \dots d_k \dots$$

is either **Terminating** $(d_i = 0 \text{ for } i > l \ge 1)$ or is **Non-Terminating** with a repeating pattern.

Proof of the only if part of Main Theorem about Rational Numbers

Proof.

Proof of the only if part of Main Theorem about Rational Numbers

Proof.

1. If f has a terminating decimal representation, then f is rational.

Proof of the only if part of Main Theorem about Rational Numbers

Proof.

- 1. If f has a terminating decimal representation, then f is rational.
- 2. If f has a non-terminating decimal representation with a repeating pattern, then f is rational.

Proof of the first Statement of only if part

<u>Statement 1</u>: If f has a terminating decimal representation, then f is rational. **<u>Consider</u>**:

$$f = d_1(\frac{1}{10}) + d_2(\frac{1}{100}) + d_3(\frac{1}{1000}) + \dots + d_k(\frac{1}{10^k})$$

then:

$$10^k f = d_1 10^{k-1} + d_2 10^{k-2} + \dots + d_k.$$

implying:

$$f = \frac{m}{10^k}$$
 with $m = d_1 10^{k-1} + d_2 10^{k-2} + \ldots + d_k$

Example

Rational numbers vs. Irrational numbers

(ロ) (四) (E) (E) (E)

Example

$$0.625 = \frac{625}{1,000} = \frac{125 \times 5}{125 \times 8}$$

Rational numbers vs. Irrational numbers

(ロ) (四) (E) (E) (E)

Example

$$0.625 = \frac{625}{1,000} = \frac{125 \times 5}{125 \times 8}$$

 $0.625 = \text{ after simplification: } \frac{5}{8}$

Rational numbers vs. Irrational numbers

(ロ) (四) (E) (E) (E)

Proof of the second Statement of only if part

<u>Statement 2</u>: If f has a non terminating decimal representation with repeating pattern, then f is rational. Without loss of generality, consider:

$$\begin{split} f &= 0.\overline{d_1 d_2 d_3 ... d_k} = 0.d_1 d_2 d_3 ... d_k d_1 d_2 d_3 ... d_k d_1 d_2 d_3 ... d_k ... \\ f &= d_1 (\frac{1}{10}) + d_2 (\frac{1}{100}) + d_3 (\frac{1}{1000}) + ... + d_k (\frac{1}{10^k}) + \\ &\qquad \frac{1}{10^k} [d_1 (\frac{1}{10}) + d_2 (\frac{1}{100}) + d_3 (\frac{1}{1000}) + ... + d_k (\frac{1}{10^k})] + \frac{1}{10^{2k}} [. \end{split}$$

then:

$$10^{k} f = \underbrace{d_1 10^{k-1} + d_2 10^{k-2} + \dots + d_k}_{m:Integer} + f.$$

implying:

$$\underbrace{(10^k - 1)}_{n: Integer} f = m \iff f = \frac{m}{n}$$

Example on Proof of the second Statement

$$\begin{aligned} f &= 0.\overline{428571} = 0.428571428571428571428571...\\ f &= 4(\frac{1}{10}) + 2(\frac{1}{100}) + 8(\frac{1}{10^3}) + 5(\frac{1}{10^4}) + 7(\frac{1}{10^5}) + 1\frac{1}{10^6} + \frac{1}{10^6}(f)\\ 10^6 \times f &= 4 \times 10^5 + 2 \times 10^4 + 8 \times 10^3 + 5 \times 10^2 + 7 \times 10 + 1 + f\\ (10^6 - 1) \times f &= 428,571\\ f &= \frac{428,571}{10^6 - 1} = \frac{428,571}{999,999} \end{aligned}$$

After simplification:

$$f = \frac{428,571}{999,999} = \frac{3 \times 142,857}{7 \times 142,857} = \frac{3}{7}$$

Proof of the "IF PART"

Rational numbers vs. Irrational numbers

白 と く ヨ と く ヨ と …

3
Tools for Proof of the <u>if</u> part of Main Theorem about Rational Numbers

Two tools to prove this result:

Tools for Proof of the <u>if</u> part of Main Theorem about Rational Numbers

Two tools to prove this result:

1. Euclidean Division Theorem

Tools for Proof of the <u>if</u> part of Main Theorem about Rational Numbers

Two tools to prove this result:

- 1. Euclidean Division Theorem
- 2. Pigeon Hole Principle

First Tool: Euclidean Division Theorem

 $M \ge 0$ and $N \ge 1$. Then, there exists a **unique pair** of integers (d, r), such that:

$$M = d \times N + r,$$

or equivalently:

$$\frac{M}{N} = d + \frac{r}{N}$$

 $d \geq 0$ is the quotient of the division, and $r \in \{0,1,...,N-1\}$ is the remainder.

$$\begin{array}{l} \mbox{Application of Euclidean Division Theorem on} \\ f, \ 0 < f < 1 \\ f = \frac{m}{n} = d_1(\frac{1}{10}) + d_2(\frac{1}{100}) + d_3(\frac{1}{1000}) + \ldots + d_k(\frac{1}{10^k}) + \ldots \\ \frac{10m}{n} = d_1 + f_1 \ \mbox{where} \ f_1 = d_2(\frac{1}{10}) + d_3(\frac{1}{100}) + \ldots + d_k(\frac{1}{10^{k-1}}) + \ldots \\ \hline 10m = d_1n + r_1 \qquad \frac{10m}{n} = d_1 + f_1 \qquad f_1 = \frac{r_1}{n} = d_2(\frac{1}{10}) + \ldots \\ 10r_1 = d_2n + r_2 \qquad \frac{10r_1}{n} = d_2 + f_2 \qquad f_2 = \frac{r_2}{n} = d_3(\frac{1}{10}) + \ldots \\ \vdots \qquad \vdots \\ 10r_{k-1} = d_kn + r_k \qquad \frac{10r_{k-1}}{n} = d_k + f_k \quad f_k = \frac{r_k}{n} = d_{k+1}(\frac{1}{10}) + \ldots \\ \vdots \end{array}$$

Each of
$$r_1, r_2, ..., r_k, ... \in \{ \underbrace{0}, \underbrace{1, ..., n-1} \}$$

▲□▶ ▲□▶ ▲ 国▶ ▲ 国 ● ● ● ●

$$\begin{array}{l} \mbox{Application of Euclidean Division Theorem on} \\ f, \ 0 < f < 1 \\ f = \frac{m}{n} = d_1(\frac{1}{10}) + d_2(\frac{1}{100}) + d_3(\frac{1}{1000}) + \ldots + d_k(\frac{1}{10^k}) + \ldots \\ \frac{10m}{n} = d_1 + f_1 \ \mbox{where} \ f_1 = d_2(\frac{1}{10}) + d_3(\frac{1}{100}) + \ldots + d_k(\frac{1}{10^{k-1}}) + \ldots \\ \hline 10m = d_1n + r_1 \qquad \frac{10m}{n} = d_1 + f_1 \qquad f_1 = \frac{r_1}{n} = d_2(\frac{1}{10}) + \ldots \\ 10r_1 = d_2n + r_2 \qquad \frac{10r_1}{n} = d_2 + f_2 \qquad f_2 = \frac{r_2}{n} = d_3(\frac{1}{10}) + \ldots \\ \vdots \qquad \vdots \\ 10r_{k-1} = d_kn + r_k \qquad \frac{10r_{k-1}}{n} = d_k + f_k \quad f_k = \frac{r_k}{n} = d_{k+1}(\frac{1}{10}) + \ldots \\ \vdots \end{array}$$

Each of
$$r_1, r_2, ..., r_k, ... \in \{ \underbrace{0}, \underbrace{1, ..., n-1} \}$$

▲□▶ ▲□▶ ▲ 国▶ ▲ 国 ● ● ● ●

The Algorithm of Successive Multiplications by 10 and Divisions by n

Can this procedure terminate?

The Algorithm of Successive Multiplications by 10 and Divisions by n

- Can this procedure terminate?
- yes, when $r_k = 0$.

The Algorithm of Successive Multiplications by 10 and Divisions by n

- Can this procedure terminate?
- yes, when $r_k = 0$.
- If not, $\{d_i, r_i\}$ starts repeating.

Proof of Terminating Sequences using Successive Multiplications and Divisions $\frac{10m}{r} = d_1 + d_2(\frac{1}{10}) + d_3(\frac{1}{100}) + \dots + d_k(\frac{1}{10^{k-1}}) + \dots$ n $10m = d_1n + r_1$ $\frac{10m}{r} = d_1 + f_1$ $f_1 = \frac{r_1}{r} = d_1 + d_2(\frac{1}{10}) + \dots$ $10r_1 = d_2n + r_2$ $\frac{10r_1}{n} = d_2 + f_2$ $f_2 = \frac{r_2}{n} = d_2 + d_3(\frac{1}{10}) + \dots$ $10r_{k-1} = d_k n + 0$ $\frac{10r_{k-1}}{n} = d_k + f_k$ $f_k = 0$ Algorithm stops at k: $r_k = 0$ implies: $r_{k+1} = r_{k+2} = \dots = 0$ and $d_{k+1} = d_{k+2} = \dots = 0$. $\implies \frac{m}{m} = 0.d_1d_2....d_k.$

Rational numbers vs. Irrational numbers

Examples of fractions with terminating decimal representation

1.
$$\frac{m}{n} = \frac{1}{4}, m = 1, n = 4$$

$$10 \times 1 = 2 \times 4 + 2 \iff \frac{10 \times 1}{4} = 2 + \frac{2}{4}, \ (d_1 = 2, \ r_1 = 2)$$
$$10 \times 2 = 5 \times 4 + 0 \iff \frac{10 \times 2}{4} = 5 + \frac{0}{4}, \ (d_2 = 5, \ r_2 = 0)$$

$$r_2 = 0$$
 implies $\frac{1}{4} = 0.d_1d_2 = 0.25$

Examples of fractions with terminating decimal representation

2.
$$\frac{m}{n} = \frac{5}{8}, m = 5, n = 8$$

向下 イヨト イヨト

Examples of fractions with terminating decimal representation

2.
$$\frac{m}{n} = \frac{5}{8}, m = 5, n = 8$$

$$10 \times 5 = 6 \times 8 + 2 \iff \frac{10 \times 5}{8} = 6 + \frac{2}{8}, (d_1 = 6, r_1 = 2)$$

$$10 \times 2 = 2 \times 8 + 4 \iff \frac{10 \times 2}{8} = 2 + \frac{4}{8}, (d_2 = 2, r_2 = 4)$$

$$10 \times 4 = 5 \times 8 + 0 \iff \frac{10 \times 4}{8} = 5 + \frac{0}{8}, (d_3 = 5, r_3 = 0)$$

$$r_3 = 0 \text{ implies } \frac{5}{8} = 0.d_1d_2d_3 = 0.625$$

通 とう ほう うちょう

Successive Multiplications and Divisions: Non Terminating Representations

$$\frac{10m}{n} = d_1 + d_2(\frac{1}{10}) + d_3(\frac{1}{100}) + \dots + d_k(\frac{1}{10^{k-1}}) + \dots$$

$$\begin{array}{rcl} 10m = d_1n + r_1 & \Leftrightarrow & \frac{10m}{n} = d_1 + \frac{r_1}{n} = d_1 + d_2(\frac{1}{10}) + \dots \\ 10r_1 = d_2n + r_2 & \Leftrightarrow & \frac{10r_1}{n} = d_2 + \frac{r_2}{n} = d_2 + d_3(\frac{1}{10}) + \dots \\ & \vdots \\ 10r_{k-1} = d_kn + r_k & \Leftrightarrow & \frac{10r_{k-1}}{n} = d_k + \frac{r_k}{n} = d_k + d_{k+1}(\frac{1}{10}) + \dots \\ & \vdots \end{array}$$

Each of
$$r_1, r_2, ..., r_k, ... \in \{\overbrace{1, ..., n-1}\}$$
 and $r_i \neq 0$ for all i .

Second tool: Use of Pigeon hole Principle in proving that Infinite representations for $\frac{m}{n}$ have repeating patterns

Statement:

If you have n pigeons

to occupy
$$n-1$$
 holes:

Then at least 2 pigeons must occupy the same hole.

Example 10 pigeons and 9 pigeon holes

Example of 3 pigeons and 2 pigeon holes

Rational numbers vs. Irrational numbers

∃ >

Solution of example of 3 pigeons and 2 pigeon holes

OR

Application of Pigeonhole Principle for non-terminating sequences

$$\begin{array}{rcl} 10m = d_1n + r_1 & \Leftrightarrow & \frac{10m}{n} = d_1 + \frac{r_1}{n} \\ 10r_1 = d_2n + r_2 & \Leftrightarrow & \frac{10r_1}{n} = d_2 + \frac{r_2}{n} \\ & \vdots \\ 10r_{k-1} = d_kn + r_k & \Leftrightarrow & \frac{10r_{k-1}}{n} = d_k + \frac{r_k}{n} \\ & \vdots \end{array}$$

By Pigeonhole principle: At least 2 remainders r_j , r_k , $1 \le j < k \le n$: $r_j = r_k$.

Applying the Pigeon hole Principle to obtain repeating sequences

Let $\{j, k\}$ be the first pair, such that: $1 \le j < k \le n$ and $r_j = r_k$ then:

More generally,

а

$$d_{j+l} = d_{k+l}$$
 and $r_{j+l} = r_{k+l}, 1 \le l \le k - j$.
nd therefore by recurrence:

$$\frac{m}{n} = 0.d_1 d_2 \dots d_j \overline{d_{j+1} \dots d_k}$$

Example

$$f = \frac{m}{n} = \frac{6}{7}$$

$$\begin{array}{ll} 10\times 6=8\times 7+4 & d_{1}=8 \ r_{1}=4 \\ 10\times 4=5\times 7+5 & d_{2}=5 \ r_{2}=5 \\ 10\times 5=7\times 7+1 & d_{3}=7 \ r_{3}=1 \\ 10\times 1=1\times 7+3 & d_{4}=1 \ r_{4}=3 \\ 10\times 3=4\times 7+2 & d_{5}=4 \ r_{5}=2 \\ 10\times 2=2\times 7+6 & d_{6}=2 \ r_{6}=6 \\ 10\times 6=8\times 7+4 & d_{7}=8 \ r_{7}=4 \\ \vdots \end{array}$$

Each of $r_1, r_2, r_3, r_4, r_5, \ldots \in \{\overline{1, 2, 3}, \overline{4, 5, 6}\}.$

Rational numbers vs. Irrational numbers

 $\{1,7\}$ is the first pair, such that $r_1 = r_7$ then: $\frac{6}{7} = 0.d_1 \overline{d_2 d_3 d_4 d_5 d_6 d_7} = 0.8\overline{571428}$

Length of pattern is 6.

Exercise

Find the decimal representation of

$$f = \frac{m}{n} = \frac{2}{3}$$

using Successive Multiplications and Divisions

Solution of the exercise
$$f=rac{m}{n}=rac{2}{3}$$

$$10 \times 2 = 6 \times 3 + 2 \quad d_1 = 6 \ r_1 = 2$$

$$10 \times 2 = 6 \times 3 + 2 \quad d_2 = 6 \ r_2 = 2$$

$$10 \times 2 = 6 \times 3 + 2 \quad d_3 = 6 \ r_3 = 2$$

$$\vdots$$

 $\{1,2\}$ is the first pair, such that $r_1 = r_2$ and therefore:

$$\frac{2}{3} = 0.d_1\overline{d_2} = 0.6\overline{6}$$

Length of pattern is 1

Answer to the Main question of Module

 $\mathcal{R} = \{ \text{Rational Numbers } f, 0 < f < 1 \}$

- $\mathcal{I} = \{ \text{Irrational Numbers } f, 0 < f < 1 \}$
- $\mathcal{S} = \mathcal{R} \cup \mathcal{I}$ with $\mathcal{R} \cap \mathcal{I} = \Phi$ empty set.

Question: If we pick at random a number f between 0 and 1, what is the probability that this number be rational: $f \in \mathcal{R}$?

Rational numbers vs. Irrational numbers

< ≣ >

•
$$|\mathcal{R}| = \infty_1$$
 and $|\mathcal{I}| = \infty_2$

< ≣ >

•
$$|\mathcal{R}| = \infty_1$$
 and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?

•
$$|\mathcal{R}| = \infty_1$$
 and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?
If f ∈ R:

- ∢ ⊒ →

•
$$|\mathcal{R}| = \infty_1$$
 and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?
If f ∈ R:

•
$$f = 0.d_1d_2..d_k$$
 or

- ∢ ⊒ →

•
$$|\mathcal{R}| = \infty_1$$
 and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?
If f ∈ R:

•
$$f = 0.d_1d_2..d_k$$
 or
• $f = 0.d_1d_2..d_{l-1}\overline{d_{l}...d_k}.$

•
$$|\mathcal{R}| = \infty_1$$
 and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?
If f ∈ R:

$$f = 0.d_1d_2..d_k \text{ or} f = 0.d_1d_2..d_{l-1}\overline{d_l...d_k}$$

While if f ∈ I : f = 0.d₁d₂...dk.... (infinite representation with no specific pattern).

•
$$|\mathcal{R}| = \infty_1$$
 and $|\mathcal{I}| = \infty_2$

Which one of these two infinities is bigger?
If f ∈ R:

$$f = 0.d_1d_2..d_k \text{ or} f = 0.d_1d_2..d_{l-1}\overline{d_l...d_k}$$

- While if f ∈ I : f = 0.d₁d₂...d_k.... (infinite representation with no specific pattern).
- Hence, "much more" ways to obtain elements in *I* than in *R*.

${\mathcal R}$ is "countably infinite"

Rational numbers vs. Irrational numbers

- ★ 臣 ▶ - - 臣

${\mathcal R}$ is "countably infinite"

• To understand this concept, define for n = 1, 2, 3, 4, ...:

$$\mathcal{R}_n = \{\frac{m}{n+1} | m = 1, 2, ..., n, \gcd(m, n+1) = 1\}.$$

• 3 >

\mathcal{R} is "countably infinite"

▶ To understand this concept, define for n = 1, 2, 3, 4, ...:

$$\mathcal{R}_n = \{\frac{m}{n+1} | m = 1, 2, ..., n, \gcd(m, n+1) = 1\}.$$

• Examples of
$$\mathcal{R}_n$$
:
 $n = 1 : \mathcal{R}_1 = \{\frac{1}{2}\} = \{r_1\}$
 $n = 2 : \mathcal{R}_2 = \{\frac{1}{3}, \frac{2}{3}\} = \{r_2, r_3\}$
 $n = 3 : \mathcal{R}_3 = \{\frac{1}{4}, \frac{3}{4}\} = \{r_4, r_5\}$
 $n = 4 : \mathcal{R}_4 = \{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\} = \{r_6, r_7, r_8, r_9\}$

< 3 b
\mathcal{R} is "countably infinite"

▶ To understand this concept, define for n = 1, 2, 3, 4, ...:

$$\mathcal{R}_n = \{\frac{m}{n+1} | m = 1, 2, ..., n, \gcd(m, n+1) = 1\}.$$

• Examples of
$$\mathcal{R}_n$$
:
 $n = 1 : \mathcal{R}_1 = \{\frac{1}{2}\} = \{r_1\}$
 $n = 2 : \mathcal{R}_2 = \{\frac{1}{3}, \frac{2}{3}\} = \{r_2, r_3\}$
 $n = 3 : \mathcal{R}_3 = \{\frac{1}{4}, \frac{3}{4}\} = \{r_4, r_5\}$
 $n = 4 : \mathcal{R}_4 = \{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\} = \{r_6, r_7, r_8, r_9\}$

• Check
$$n = 5 : \mathcal{R}_5 = \{\frac{1}{6}, ?\}$$

- E - M

\mathcal{R} is "countably infinite"

▶ To understand this concept, define for n = 1, 2, 3, 4, ...:

$$\mathcal{R}_n = \{\frac{m}{n+1} | m = 1, 2, ..., n, \gcd(m, n+1) = 1\}.$$

• Examples of
$$\mathcal{R}_n$$
:
 $n = 1 : \mathcal{R}_1 = \{\frac{1}{2}\} = \{r_1\}$
 $n = 2 : \mathcal{R}_2 = \{\frac{1}{3}, \frac{2}{3}\} = \{r_2, r_3\}$
 $n = 3 : \mathcal{R}_3 = \{\frac{1}{4}, \frac{3}{4}\} = \{r_4, r_5\}$
 $n = 4 : \mathcal{R}_4 = \{\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}\} = \{r_6, r_7, r_8, r_9\}$

• Check
$$n = 5$$
 : $\mathcal{R}_5 = \{\frac{1}{6}, ?\}$

•
$$\mathcal{R}_5 = \{\frac{1}{6}, \frac{5}{6}\} = \{r_{10}, r_{11}\}$$

• E •

► As a consequence, we can **enumerate** the elements of *R*:

$$\mathcal{R} = \{r_1, r_2, r_3, r_4, ...\}$$

► As a consequence, we can enumerate the elements of *R*:

$$\mathcal{R} = \{r_1, r_2, r_3, r_4, ...\}$$

 Implying: Countable infinity of *R* ⇐⇒ a one to one relation between *R* and the natural integers: N = {1, 2, 3, 4...}

On the other hand, *I* is "uncountably" infinite

- ★ 臣 ▶ - - 臣

- On the other hand, *I* is "uncountably" infinite
- This follows from the fact that f is irrational if and only if its infinite representation 0.d₁d₂...d_k... has all its elements belonging randomly to the set {0, 1, 2, ...9}.

On the other hand, *I* is "uncountably" infinite

- This follows from the fact that f is irrational if and only if its infinite representation 0.d₁d₂...d_k... has all its elements belonging randomly to the set {0, 1, 2, ...9}.
- At that point, the proof of uncountability of *I* can be obtained using Cantor's proof by contradiction.

•
$$i_1 = 0.f_{1,1}f_{1,2}...f_{1,k}...$$

 $i_2 = 0.f_{2,1}f_{2,2}...f_{2,k}...$
 $i_m = 0.f_{m,1}f_{m,2}...f_{m,k}...$

Rational numbers vs. Irrational numbers

글 🕨 🛛 글

•
$$|\mathcal{R}| = \infty_1 \equiv \aleph_0.$$

글 🕨 🛛 글

글 🕨 🛛 글

•
$$|\mathcal{R}| = \infty_1 \equiv \aleph_0.$$

• $|\mathcal{I}| = \infty_2 \equiv \mathcal{C}.$

• With $\aleph_0 \ll$ ("much less than") C.

•
$$|\mathcal{R}| = \infty_1 \equiv \aleph_0.$$

• $|\mathcal{I}| = \infty_2 \equiv \mathcal{C}.$
• With $\aleph_0 \ll$ ("much less than") $\mathcal{C}.$
 $\implies \operatorname{Prob}(f \in \mathcal{R}) = \frac{\aleph_0}{\aleph_0 + \mathcal{C}} \approx \frac{\aleph_0}{\mathcal{C}} \approx 0.$

Rational numbers vs. Irrational numbers

æ