In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_1	С	G	G	А	А	Т	А	Т	Т	Т
White Boxer 1	Т	G	Т	С	G	G	А	Т	Т	С

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_2	Т	G	G	А	Α	Т	А	Т	Т	С
White_Boxer_2	Т	А	Т	С	А	G	G	Т	Т	С

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_3	С	G	G	А	А	Т	А	Т	Т	С
White_Boxer_3	С	А	Т	С	G	G	G	Т	Т	С

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_4	С	А	G	А	Α	Т	Α	Т	Т	С
White_Boxer_4	С	А	Т	С	G	G	G	С	С	Т

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_5	С	G	G	А	Α	Т	А	Т	Т	С
White_Boxer_5	С	А	Т	С	G	G	G	С	С	Т

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_6	С	G	G	А	А	Т	А	Т	Т	С
White_Boxer_6	С	G	G	А	G	G	G	С	С	Т

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_7	С	А	G	А	А	Т	А	С	С	Т
White_Boxer_7	С	А	Т	С	G	G	G	С	С	С

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_8	Т	G	G	А	Α	Т	А	Т	Т	С
White_Boxer_8	С	А	G	А	G	G	G	С	С	С

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_9	С	А	Т	С	А	Т	А	С	С	Т
White_Boxer_9	С	G	G	С	G	G	G	С	С	Т

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_10	Т	А	Т	С	Α	Т	А	Т	С	Т
White_Boxer_10	Т	А	Т	С	G	G	G	С	Т	С

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_11	С	Α	Т	С	А	Т	А	Т	Т	С
White_Boxer_11	Т	G	Т	С	G	G	G	С	С	Т

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_12	С	G	G	А	А	Т	А	С	Т	С
White_Boxer_12	С	А	Т	С	G	G	G	С	С	Т

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_13	Т	А	Т	А	А	Т	А	Т	Т	С
White_Boxer_13	Т	G	G	А	G	G	G	Т	Т	С

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_14	Т	G	G	А	А	Т	А	Т	С	Т
White_Boxer_14	Т	G	G	А	G	G	G	С	С	Т

In the chart below are the letters of DNA found at 10 different positions along chromosome #20, from two different dogs:

a solid-color boxer dog & a white boxer dog

Analyze these data (below) at each of the 10 positions on chromosome #20 in the following way, and then come to the board to record your data in the chart on the board: *For any position where the solid dog and the white dog differ in sequence*, write into the chart the DNA letter possessed by the white dog at that position. *For positions where the dogs are identical in sequence*, do not write anything into that position in the chart.

	23,291,835	23,977,848	24,252,239	24,320,510	24,827,321	24,876,053	24,992,128	25,648,155	25,950,706	27,425,389
Dog										
Solid_Boxer_15	С	А	G	А	А	Т	А	Т	Т	С
White_Boxer_15	Т	G	Т	С	G	G	А	Т	Т	С