Video on Blossoms/Quadratics

Gilbert Strang, MIT
 gilstrang@gmail.com

Notes on the questions suggested before video pauses

After part 1: The parabola $y=-x^{2}+4 x+9$ opens downward because of $-x^{2}$. Since $y=9$ at $x=0$, the parabola must cross the x axis twice - before and after $x=0$. The formula for the roots produces $2 \pm \sqrt{13}$, giving practice with square roots.
After part 2: The parabola $y=x^{2}-x$ factors into $x(x-1)$. Then $y=0$ when $x=0$ and also when $x=1$ (two real roots).

The parabolas $y=x^{2}-x+1$ and $y=x^{2}-x+2$ have no real roots. You can see that $x^{2}-x+1=0$ is impossible since all real x are smaller than $x^{2}+1$. (Why? Because if $|x|>1$ then x^{2} is bigger, and if $|x|<1$ then 1 is bigger.) The quadratic formula gives the complex roots of parabolas:

$$
y=\frac{1 \pm \sqrt{-3}}{2} \text { and } y=\frac{1 \pm \sqrt{-7}}{2} .
$$

After part 3: The area with sides x and $50-x$ is $y=-x^{2}+50 x$ with slope $-2 x+50$. Then the area is maximum where the slope is zero, at the top of the parabola. This top point has $x=25$ and the rectangle is actually a square.
After part 4: A square is the best of all rectangles but not the best of all shapes. That honor goes to a circle. The circumference going around the circle is $2 \pi r$ and the area is πr^{2} :

$$
2 \pi r=100 \text { meters and } \pi r^{2}=\pi\left(\frac{100}{2 \pi}\right)^{2}=\frac{2500}{\pi} \approx 795
$$

This circular area of 795 easily defeats the rectagular area of $(25)^{2}=625$.
Question for superstars about two parabolas $y=a x^{2}+b x+c$ and $Y=$ $A x^{2}+B x+C$. What condition on the six numbers a, b, c, A, B, C means that the parabolas never touch?

