Video on Blossoms/Quadratics Gilbert Strang, MIT gilstrang@gmail.com

Notes on the questions suggested before video pauses

After part 1: The parabola $y = -x^2 + 4x + 9$ opens downward because of $-x^2$. Since y = 9 at x = 0, the parabola must cross the x axis twice – before and after x = 0. The formula for the roots produces $2 \pm \sqrt{13}$, giving practice with square roots.

After part 2: The parabola $y = x^2 - x$ factors into x(x - 1). Then y = 0 when x = 0 and also when x = 1 (two real roots).

The parabolas $y = x^2 - x + 1$ and $y = x^2 - x + 2$ have no real roots. You can see that $x^2 - x + 1 = 0$ is impossible since all real x are smaller than $x^2 + 1$. (Why? Because if |x| > 1 then x^2 is bigger, and if |x| < 1 then 1 is bigger.) The quadratic formula gives the complex roots of parabolas:

$$y = \frac{1 \pm \sqrt{-3}}{2}$$
 and $y = \frac{1 \pm \sqrt{-7}}{2}$.

After part 3: The area with sides x and 50 - x is $y = -x^2 + 50x$ with slope -2x + 50. Then the area is maximum where the slope is zero, at the top of the parabola. This top point has x = 25 and the rectangle is actually a square.

After part 4: A square is the best of all rectangles but not the best of all shapes. That honor goes to a circle. The circumference going around the circle is $2\pi r$ and the area is πr^2 :

$$2\pi r = 100$$
 meters and $\pi r^2 = \pi \left(\frac{100}{2\pi}\right)^2 = \frac{2500}{\pi} \approx 795$.

This circular area of 795 easily defeats the rectagular area of $(25)^2 = 625$.

Question for superstars about two parabolas $y = ax^2 + bx + c$ and $Y = Ax^2 + Bx + C$. What condition on the six numbers a, b, c, A, B, C means that the parabolas never touch?